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Introduction to string theory: its structure and its uses

By D.I.OLive, F.R.S.

Department of Theoretical Physics, Blackett Laboratory, Imperial College of Science and Technology,
Prince Consort Road, London SW7 2BZ, U.K.

Y 4

Over five years ago experiments at CERN confirmed that the weak (radioactive)
interactions of elementary particles are mediated by gauge particles that are heavy
relatives of the photon, namely the quantum of light and radio wave propagation.
Gauge particles have to belong to a pattern given by the structure of a compact Lie
group. Mathematicians listed such patterns at the beginning of the century and it
seems that nature favours one of the ‘exceptional’ possibilities when nuclear forces are
included.

Twenty years ago a picture of elementary particles as quantums of the excitations
of a one-dimensional string was developed. Consistency with the principles of
relativity and quantum mechanics seemed to require the aforementioned exceptional
gauge structure as well as gravitational forces in Einstein’s formulation. Thus a simple
‘string’ principle promised to explain and unify all the diverse fundamental forces of
nature: electromagnetic, weak, nuclear and gravitational. Unfortunately, there
remain detailed questions still to be resolved.

Nevertheless, the theory possesses rich mathematical structure encompassing Lie
algebras and infinite-dimensional generalizations and complex algebraic geometry in
a way which sheds valuable new perspectives on modern pure mathematics. At the
same time it has unexpected applications in describing and classifying the modes
of phase transition in two-dimensional materials, a classical problem in statistical
physics.
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An ideal introduction to string theory could, with some justice, be subtitled ‘ The string theory
prerequisites for mathematics’, but that would be too ambitious a title for what I have to say.

The reason I mention this is to draw attention to the fact that string theory is a theory of
elementary particles and their fundamental interactions largely created in the decade after
1968 by physicists who were largely ignorant of modern advanced mathematics (some of which

Y o

had not even been developed then). They certainly believed that they had a theory of
i considerable mathematical significance, but were unable to interest mathematicians in it at
P that time. Equally, they were unable to persuade the larger physics community of the relevance
O : of their theories. Consequently, the theory went into hibernation only to reawaken dramatically
= when it was recognized that there was a rapprochement between string theory and newer ideas
2O in particle physics, grand unification and the theory of anomalies, as well as ideas further afield,
T O P physics, g Y

~ such as the representation theory of affine Kac-Moody algebras and the theory of Riemann

surfaces and their moduli. Since then, progress has continued apace on several fronts, providing
the occasion for this meeting.

String theory was, of course, always based on physical principles, but these have shifted as
the structure has been clarified. As the original version was designed to include observed features
of the scattering of nuclear particles, the physical principles were couched in terms of the
scattering matrix and the presentation of the theory was algebraic in nature. Later it was
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realized that the theory applied rather to the fundamental forces between leptons and quarks
rather than the forces between neutrons and protons and as a consequence the basic principles
and the presentation of the theory became more geometric in nature. The result of this was that
the same basic theory could be formulated in two apparently different ways, algebraic and
geometric, and it is the comparison between these two approaches which has related different
branches of mathematics in unexpected and fascinating ways, as described by other
contributors to this Symposium.

Historically, the graph of the development of string theory has resembled a staircase with
seemingly insurmountable obstacles suddenly overcome by a new insight, usually based on the
appreciation of an unexpected manifestation of symmetry in a form subtly different from
hitherto, for example, the role of the Virasoro algebra, super versions of it, and affine
Kac-Moody algebras.

In motivating string theory I shall proceed directly to the current point of view, ignoring the
history that can be gleaned from the previous Royal Society Discussion Meeting in 1969 or my
talk at the 1974 London conference on particle physics (Olive 1974).

Hitherto the twentieth century has seen four new physical principles:

(i) Einstein’s theory of special relativity (which unified space and time);
(ii) quantum mechanics;

(iii) the gauge principle, i.e. invariance under internal symmetries performed independently
at different points of space and time;

(iv) gravity according to Einstein’s theory of general relativity.

The simplest example of (iii) is a change in phase of the Schrodinger wave function for an

electron ;
Y(x, 0) > e'XE My (x, 1), (1)

It is a familiar feature of quantum mechanics that wave functions are complex, with an
overall phase that is irrelevant. The phase change that occurs in (1) varies from point to point
in space and time. Such phase changes evidently form a U(1) group at each point of space and
time, called the gauge group. The demand that physics be independent of these ‘gauge
rotations’ leads to the introduction of a ‘gauge potential’ or ‘connection’ satisfying Maxwell’s
equations, and hence the phenomena of electricity and magnetism, together with light- and
radio-wave propagation. The constant ¢ in the phase change is the electric charge of the
electron. The most natural generalization of this group U(1) of unitary one by one matrices is
to the group U(2) of unitary 2 by 2 matrices. The gauge theory of this yields a nonlinear
generalization of Maxwell’s equations satisfied by four gauge fields (corresponding to the four
generators of the group U(2)). This successfully describes the phenomena of radioactivity in
addition to electromagnetism, which corresponds to a U(1) subgroup of U(2) (not the
invariant one). This is the Salam—~Weinberg theory of electroweak interactions that was
experimentally verified at CERN in 1982-83 by the detection of the three new gauge particles.
The reason that detection was so difficult was that, owing to symmetry breaking effects, they
were not massless like the photon, which is the particle of the U(1) gauge potential, but heavier
than a hydrogen atom.

The success of this theory suggested that the nuclear forces be included similarly. It had
already been realized that the forces between the quarks, the constituents of the protons and
neutrons, were of the gauge type with group SU(3) (of 3 by 3 unitary matrices with unit
determinant). The actual nuclear forces between the neutrons and protons were not of this

(2]
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INTRODUCTION TO STRING THEORY 321

type, being a complicated derived effect of the former. Because of the ubiquity of gauge forces
an attractive goal would be a ‘grand unification’ whereby the gauge group was a simple Lie
group containing SU(3) x U(2) as economically as possible. The most promising candidates
turned out to be the following sequence of groups:

U(2) xSU(3) = SU(5) = SO(10) < E; < E, < E,. 2)

The larger groups here are successively more approximate (and uncertain) owing to the
symmetry-breaking effects. Nevertheless, once the matter particles, i.e. electrons, muons,
neutrinos and quarks, are assigned to representations of these groups, usually what Bourbaki
calls miniscule representations, we have an extremely succinct encapsulation of thousands of
millions of pounds of experimental data. However, these statements are not the whole story:
there are the symmetry-breaking effects to be studied in more detail by the future accelerators
and the theoretical question of how to include gravity (iv). The results (2) add the stunning
new question as to why nature has an apparent predilection for exceptional structures such as the
E groups. The interest in string theory is that it promises successful answers to the latter two
questions even though the question of symmetry breaking is still beyond it.

Not all theories of the gauge type are internally consistent when quantum mechanics is fully
taken into account. The famous results from the late 1950s concerning the non-conservation
of parity in weak (radioactive) interactions showed that left- and right-handed matter should
be treated differently, as they transform under inequivalent representations of the grand
unified gauge group (actually complex conjugates of each other in four dimensions of space and
time, and hence complex). The trouble is that it is not always possible to quantize a given
classical theory while preserving a symmetry because of what are called ‘anomalies’. This can
be seen from quantum mechanical action principle of Richard Feynman (1948):

matrix element = f & fields etection/s, (3)

In a conventional field theory the action is an integral over space-time of the lagrangian
density that depends only on the fields and their derivatives evaluated at the relevant space-
time point. In the classical limit of Planck’s constant / being very small this gives the principle
of stationary action, as it should, with local field equations. Symmetry in classical physics is
guaranteed if the action is invariant, but the above shows that in quantum theory the
integration measure over the fields must also be invariant. This is not automatic in the case of
gauge symmetry when left-handed and right-handed matter transform according to
inequivalent representations of the gauge group. (This effect is closely related to the
Atiyah—Singer index theorem.) For the grand unified theories in four dimensions of space and
time this problem is fortunately evaded by the choice of representations assigned to matter on
the basis of the data.

The problem of anomalies will reappear in various guises when we have dealt with the next
difficulty, which is the occurrence of divergences in the above expression, particularly when
gravity is taken into account following Einstein’s theory. Because we are dealing with local field
equations we are necessarily imagining that the elementary particles occupy isolated points in
space. This picture is rather singular especially when interaction is included. As time evolves,
the particle point follows a ‘world-line’, depicting its trajectory in space and time with
interactions occurring at the junctions of these world-lines; see figure 1.

[3]
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These junctions are highly singular points in this description and are the points where the
divergences originate. Unfortunately, they appear to be an inevitable consequence of the
principles (i)—(iii), which had, in other respects, been so successful. One lesson can be salvaged
and that is that the action for freely moving point particles is beautifully simple and geometric:
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action = —mc? f dr, (4)

where 7 is the proper time of the particle, i.e. that measured by a clock travelling with it, and
the integration is along the world-line of the particle. Thus the action is simply the length of
the world-line and is stationary precisely for straight-line trajectories.

The string revolution started 20 years ago when it was realized that it was worth picturing
elementary particles as occurring in families corresponding to the quantized modes of
excitation of string. The original reason was to explain the spectrum of observed particles that
included high spins, but later the motivation changed as we shall see. Thus if the string is open
ended, I have as possible motions those depicted in figure 2.
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These illustrations indicate that the end-points of the string move at the speed of light. The
frequency of the vibrations superimposed on the overall rotation are harmonics of a
fundamental, just as they are for a vibrating violin string which has fixed end-points, even
though the two boundary conditions are quite different.

These are classical solutions and so render stationary the action that again is extremely
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simple and geometric (Goto 1971; Y. Nambu, unpublished work). It is the two-dimensional
‘area’ of the world-sheet swathed out by the string as it moves in space and time. This is a
natural generalization of the action (4), but, as we shall see, possesses more symmetry and
intrinsic advantages compared with (4) in determining interactions:

action oc area of world-sheet = fde do 4/ (—deth). 5)

To say what we mean by area we need a metric on the world-sheet (supposing it to be a
manifold) and we take the natural one imposed by its embedding in space and time that has
the usual (flat) Lorentz metric g appropriate to D — 1 space variables and one time variable.
Because of its geometric nature, the action (5) is independent of the choice of coordinates on
the world-sheet. It is usual to suppose that the sheet possesses at least one tangent that is time-
like at each point. 7 = 7! is a time-like variable and ¢ = 7* a space-like one. The coordinate
in space-time of the point (7,0) is denoted X*(7,0). Then the metric is given by

h,y=0,X'g,0,X", where 0,=0/0r" or (6a)
X Xx
r=(3y 1) (6)

in matrix notation. Hence
—deth = (XX')?—X2X"?, (7)

where dot and prime denote differentiations with respect to 7 and o, respectively.

There is an important feature of the action (5) that agrees with everyday experience of
electromagnetic waves and so lends weight to the idea that (5) is the beginning of a theory
encompassing the gauge theories previously discussed. This is called ‘transversality’. The
elementary particles are the quantized vibrations of the string harmonics previously mentioned.
If we picture the vibrations in space-time, we see that the vibrations within the world-sheet
have no meaning as they can be redefined away by a change of the variables o and 7. This is
good because we do not want vibrations in time. These would be difficult to interpret and lead
to ‘ghosts’, which are incompatible with the principles of quantum mechanics. But it also
follows that we can redefine away those space-like vibrations along the string, i.e. longitudinal
vibrations. This leaves only D —2 meaningful directions transverse (or normal) to the world-
sheet in which physical vibrations can occur.

When D = 4, our usual situation, this leaves two diréctions of transverse polarization or
vibration. Light waves exhibit this feature by possessing two states of polarization orthogonal
to the direction of propagation. This can be seen by superimposing two lenses of polarized
sunglasses and rotating them relative to each other. Radio waves are also polarized
transversally as is demonstrated by the fact that radio aerials on cars have to be mounted
vertically. v

This transversality plays an important role in the mathematical structure of string theory.
It is related to the reparametrization invariance of the string action (5) and this recalls general
covariance in Einstein’s general relativity. I now explore the idea that the action (5) can be
formulated in a way more like that theory.

[6]
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From that point of view, I think of the X" as D scalar fields on the world-sheet furnished
with an SO(D—1, 1) internal symmetry. This suggests I consider an alternative action to (5):

action = f dodry/(—deth)d, X"gﬂ,,aﬂX"/;“p (8a)
= Hdadfv(—det/b hogh? (80)

by using (6a) for the embedded metric. As in general relativity, I now treat the dummy metric
l;aﬂ as an independent variable in the action, in addition to the X*, which were the previous
independent variables. There are consequently two Euler-Lagrange equations resulting from
rendering (8) stationary to variations first of £:

0#, =0, 9
where 6,5=0,Xg,0, X =3, 0k, (10)
and then of X AX =9,(v/ (—deth) B9, X*) = 0. (11)

Expression (10) is interpreted as the energy-momentum tensor within the string world-sheet.
By (9), it vanishes, expressing the fact that there is no observable flow of energy within the
world-sheet. This is another statement of transversality. It also follows from (9) that the
dummy and induced metrics % and 4 are proportional. The action (84) is independent of the
overall scale in £ and, as a consequence, (85) reduces to the Nambu—Goto action (5). The
action (8) is usually known as the Polyakov action though it is not due to him. The second
Euler-Lagrange equation (11) states that X* satisfies the covariant Laplace equation on the
world-sheet. If 7 and o are chosen to be orthonormal in the sense that (654) reads as

((1) _01)’

this reduces to the wave equation, thus explaining the wave solutions described in figure 2.
The symmetry of the action (8) under rescaling of , the dummy metric, is a new feature
compared with the Nambu-Goto action (5). The process is called Weyl rescaling and
henceforth assumed to be of fundamental importance. This new principle would forbid me
adding a cosmological term fdo‘d'r v/ (—detk) to (8) but would allow an Einstein term

A(Einstein) = const. f f dodr+/(—deth)R, (12)

where R is the scalar curvature. Because the world-sheet is two dimensional, the integrand in
(12) is a total derivative. As a consequence the equations of motion already considered would
be unaffected by the addition of (12) to (8).

However, it could have important global effects. So far, I have mentioned strings with ends
but these imply that I must also have strings with no ends, i.e. closed strings. Their world-
sheets have no boundary and are easier to consider. A freely propagating closed string would
produce a world-sheet like a cylinder, see figure 3. But I could consider a surface with more
complicated topology, as in figure 4, with g holes. Physically, this describes a string that splits

[6]


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY :

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

INTRODUCTION TO STRING THEORY 325

Vg
/
I

i

|

\

\

\\
\\

Ficure 3

FiGURE 4

and recombines g times by means of 2¢g vertices. In this way the string manifests interaction.
The contributions to the Feynman integral (3) from such surfaces all have a common factor

elA(Einstein) - eiconst.(Euler number) _ elconst.(2-29)
)

by the Gauss-Bonnet theorem, as A(Einstein) is topological. Thus all world-sheets with the
same topology contribute a common factor raised to the power of the number of interactions
via the constant in (12). This is the interaction or coupling constant.

We see that string theory possesses a simple geometrical mechanism for describing
interaction by means of a complication of the topology of the world-sheet through the addition
of holes. This mechanism would seem unlikely to produce divergences because there is no
apparent singular point of the type that we saw was responsible for the divergences in the point-
particle situation. Yet the successes of the gauge theories could also be encompassed if we could
understand the choice of gauge group.

The discussion so far is incomplete in that the absence of anomalies in quantum mechanics
must be properly checked. This can be done in at least two different ways leading to the same
conclusions: (1) the open string spectrum contains a massless spin one particle, i.e. a gauge
particle, (2) the closed string spectrum contains a massless spin two particle, i.e. the graviton,
the carrier of gravitational forces, and (3) the theory avoids anomalies in Lorentz covariance
only if space and time has 26 dimensions!

The first two results are highly satisfactory in that they provide more evidence that string
theory does indeed include the gauge and gravitational forces. Some greeted the third result
with consternation while others regarded it as the first indication of exceptional structure. It
was Lovelace (1971) who was the first to realize that there had to be 26 —2 = 24 transverse
dimensions to facilitate the action of an element of the modular group that related closed string
states to open string states. The exceptional structure of which this was suggestive is the special
even self-dual lattice in 24 dimensions, the Leech lattice. Now we know that there is a
holomorphic conformal field theory related to this whose symmetry group is the famous
monster group (Frenkel et al. 1988).

The string theory described so far has the serious drawback that the particle states are all
bosonic and never fermionic. Hence the theory lacks leptons and quarks, an essential ingredient
for a would-be unified theory. A variant of string theory including fermions was initiated by

[7]
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Ramond (1971) and by Neveu & Schwarz (1971) and developed in the years following. It
possessed supersymmetry on the world-sheet (and stimulated much activity in that subject).
For consistency it required 10 dimensions of space and time rather than 26, but, like the purely
bosonic theory, possessed a particle moving faster than light and thus unacceptable. The
fermionic string theory had the advantage that this tachyon could be eliminated in a way that
not only respected the existing symmetries, but enlarged them to manifest supersymmetry in
space and time (Gliozzi et al. 1977). As a result this theory was later called the ‘superstring’
(Green & Schwarz 1981). The construction of this supersymmetry algebra owed much to the
fact that the transverse space has the same dimension, 10 —2 = 8, as the algebra of octonions.
Indeed, the exceptional Jordan algebra of hermitian three by three matrices with octonion
entries plays a role and I sense that the trail of exceptional structures is growing even warmer.

It is possible to add gauge symmetry to such a theory, but then one has to check the absence
of an anomaly for it in 10 dimensions. There the representations carried by left-handed and
right-handed fermionic matter are separately real and unrelated. In fact, by supersymmetry,
one of these representations is trivial and the other adjoint to match the gauge particles.
Green & Schwarz found that, given this, the anomaly cancelled only if the gauge group was
Eg X Eg or SO(32). The easiest way to understand this dramatic result is to note that both these

~ possess rank 16 and weight lattices (or sublattices) that are even and self-dual, properties
good for constructing theta functions with simple behaviour under the action of the modular
group (an important feature of a consistent string theory). The first possible choice of group
is close to explaining the exceptional group structures observed in the sequence (2).

A superstring theory with this gauge symmetry was found by the ‘heterotic’ construction,
so called because it awkwardly matched a 26-dimensional left-handed bosonic string with a 10-
dimensional right-handed superstring (Gross ¢t al. 1985). The 16 excess dimensions of the
bosonic string moved on a maximal torus of either of the stated groups, thereby yielding that
group as a gauge symmetry according to the vertex operator construction of Frenkel & Kac
(1980) and of Segal (1981).

This leaves the problem of reducing from 10 to four dimensions, or of moving in some more
direct manner with an explanation of the symmetry-breaking effects mentioned earlier. There
is much activity, but as yet no satisfactory and compelling solution. Peter Goddard, Graham
Ross and John Schwarz discuss the latest progress in their papers in this Symposium.

The question of divergences is still open, with no universally accepted proof of their absence.
S. Mandelstam (unpublished work) has announced a proof for superstring theory but, as far
as I know, no other workers have been able to examine the details of this proof yet. This result
would be of considerable importance as it would establish, for the first time, a finite theory of
gravity.

I can now say something about the quantization of the string motion. This can be done
algebraically, forming the hamiltonian and using canonical quantization rules. An important
role is played by the energy-momentum tensor (10), which is traceless in the sense that
k*6,, = 0, by definition, without recourse to (9). This tensor has only two components, which
when appropriately chosen depend only on ¢ and 7, respectively. In a suitable basis these two
components generate two commuting copies of the Virasoro algebra:

[Lm’ Ln] = (m_n) Lm+n +1L2D m(m2_ 1) 8m+n,0' (13)

The non-zero term on the right-hand side of (13) means that (9) cannot hold quantum

[8]
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mechanically (unless Faddeev—Popov ghosts are introduced and D = 26). Instead one
considers ‘physical states’ corresponding to physical particles satisfying

(Ln—=8p,0) IPhys) = 0. (14)

Because of time-like oscillations the Hilbert space of quantized oscillations is not positive
definite. However, the subspace satisfying (14) is positive definite when a subspace of zero-
norm states is modded out. This is the celebrated ‘no ghost’ theorem of Brower (1972) and of
Goddard & Thorn (1972), valid providing D is less than or equal to 26. The structure of this
proof has lead to a representation theory of the Virasoro algebra (13) for general values of D
not necessarily an integer. This theory is used for classifying more general theories with
conformal symmetry and in particular, gives the critical exponents that govern the power law
behaviour of correlation functions in two-dimensional materials making second-order phase
transitions (Belavin et al. 1984 ; Friedan et al. 1984). This exciting application of string theory
has developed rapidly with affine Kac-Moody algebras playing a key role (Goddard & Olive
1986).

Finally, I briefly mention the more geometric approach to quantization associated with the
name of Polyakov (1981). We have seen that the string action (8) is invariant under both
diffeomorphisms and Weyl rescalings of the metric /:aﬁ. Thus in the integration over metrics
implied by the Feynman integral (3), I should only integrate over conformal classes not so
related. If, following Polyakov, I imagine performing a ‘Wick rotation’ in which time
becomes imaginary so that both the space-time metric g and the world-sheet metric A%
become positive definite, the conformal classes now label Riemann surfaces. The integration in
(3) is that over the moduli space of Riemann surfaces of a given topology (at least for closed
strings) and is finite dimensional. However, to obtain this I have to divide out by the volume
of the invariance group, a manoeuvre that is customarily performed in quantum field theory
by the trick of introducing the Faddeev—Popov ghosts as extra fields (which relate to the
cohomology of the Virasoro algebra (13)). The new, combined integration measure is
anomaly-free only if D = 26 or 10, as appropriate. Obviously, the development of these ideas
uses the theory of moduli spaces in an interesting way which is particularly intriguing when it
is compared with the algebraic approach previously mentioned.
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Discussion

P. T. LANDsBERG (University of Southampton, U.K.). In cosmology and elsewhere one is driven to
talk about the ‘coupling up’ of the extra dimensions. Can Professor Olive comment on this
problem.

D.I. Ouivg, F.R.S. I presume Professor Landsberg is referring to the ‘curling up’ of surplus
dimensions of space whereby the conjugate momenta appear as internal charges. In string
theory, as opposed to simpler theories, there is a more sophisticated and comprehensive version
that I referred to when I mentioned the vertex operator construction for affine Kac—-Moody
algebras. I expect that other contributors, namely Goddard, Schwarz & Ross, have more to
say about this.
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